00
00
00
00
  • 重要日期
  • 2025年3月28日

    会议现场注册

  • 2025年3月28日

    会议开始时间

  • 2025年3月28-30日

    会议时间

[口头报告]scStateDynamics: deciphering the drug-responsive tumor cell state dynamics by modeling single-cell level expression changes

scStateDynamics: deciphering the drug-responsive tumor cell state dynamics by modeling single-cell level expression changes
编号:51 访问权限:仅限参会人 更新:2025-03-25 14:09:03 浏览:126次 口头报告

报告开始:2025年03月29日 16:40 (Asia/Shanghai)

报告时间:20min

所在会议:[S5] 一作面对面论坛(交叉) » [S5] 一作面对面论坛(交叉)

暂无文件

摘要
Understanding tumor cell heterogeneity and plasticity is crucial for overcoming drug resistance. Single-cell technologies enable analyzing cell states at a given condition, but catenating static cell snapshots to characterize dynamic drug responses remains challenging. Here, we propose scStateDynamics, an algorithm to infer tumor cell state dynamics and identify common drug effects by modeling single-cell level gene expression changes. Its reliability is validated on both simulated and lineage tracing data. Application to real tumor drug treatment datasets identifies more subtle cell subclusters with different drug responses beyond static transcriptome similarity and disentangles drug action mechanisms from the cell-level expression changes.
关键字
报告人
郭文博
清华大学

发表评论
验证码 看不清楚,更换一张
全部评论
登录 注册缴费 会议动态 赞助方案